11. Theory of Atomic-Scale Friction
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Friction between two solids is not only one of the most common, but also one of
the most complex and least understood processes in nature [11.1]. At rough
interfaces, plastic defermations and abrasion — both associated with the re-
arrangement of interatomic bonds  are responsible for energy dissipation
during the relative motion of the two solids. A fundamentally different behavior
is observed at “perfect”, weakly-interacting interfaces. There, friction without
wear corresponds to energy transfer from macroscopic degrees of freedom
(describing the relative motion of the bodies in contact) to microscopic degrees
of freedom (such as phonons or electromic excitations) which occur as heat.
Considerable success has been achieved recently in the quantitative measure-
ment of [riction forces on the atomic scale [11.2] and the understanding of the
underlying microscopic mechanisims in the case of shding friction without wear
[11.3]. This success has been made possible by an increasing sophistication in
the characterization of interfaces, from the use of rather rough interfaces
[11.4,5] to atomically flat areas [11.6], and imaginative adaptations of the
Scanning Force Microscope (SFM) [11.7] for friction measurements. On the
other hand, rapid development of computational techniques and the availability
of large computer resources have made quantitative predictions for the friction
process possible [11.8, 9]. The success on both the experimental and theoretical
side has opened up a new research field called nanotribology.

In this chapter, I will discuss the new possibilities. but also the limitations of
scanning force microscopy in obtaining fundamental understanding of both the
sliding and rolling friction processes. [ will start with a brief discussion of the
irreversibility in the friction process and possible ways to model an “ideal
friction machine™ based on the SEM. Next. | will review existing hrst-principles
calculations for friction associated with a single atom sliding on a substrate.
Finally, I will discuss limits of nondestructive adsorbate-substrate interactions
which are related to the onset of wear in SFM measurements.

11.1 Microscopic Origins of Friction

Let us consider two bodies in contact, A and B, which are in relative motion,
Under normal conditions, a {riction force F,; occurs in this situation along the
direction of motion n addition to the reaction forces of classical mechanics
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[11.10]. This force is related to the applied load F,, between the two bodics as
Fi=uF., . (11.1)

The coefficient of friction, u, ranges typically between 1072 for smooth interfaces
and 1 for rough interfaces. Large values of y reflect the fact that interatomic
bonds at the A-B interface are being broken or rearranged during the relative
motion of the bodies. At an interface with essentially flat areas, we can consider
several cases which can be classified according to relative bond strengths. This
will allow us to establish the conditions under which friction without wear can
be expected.

Let us first discuss the basic situations occurring during friction with wear. If
interatomic A-A bonds are comparable in strength to B-B bonds, and both
much weaker than A-B bonds, the relative motion between A and B will
eliminate large asperities at the interface in a “sandpaper action”. This process is
typically accompained by long-ranged plastic deformations and dislocation
motion away from the interface. Note that, in this case, a lubricant C 1s often
used [11.11]. The situation of A-B bonds stronger than A-A and B-B bonds
will lead to spontaneous bonding at the interface (similar to the case of strong
C-C bonds which make C an adhesive). The relative motion of A and B will in
this case result from a fracture inside the weaker of the solids along the interface.
If B-B bonds are much weaker than A-A bonds, the relative motion of A on
B will lead to a “plowing™ of B by A.

Friction without wear can occur in the ideal case of a defect-free interface
between single crystals A and B. In order to avoid plastic deformations, we also
require the load F., on the interface not to exceed the elastic imit within the
“softer” solid. Furthermore, the A—A bonds should be comparable in strength to
B-B bonds, and at the same time be stronger than A-B bonds. [1 was recognized
a long time ago that, in this case, the only source of friction and its modulation
should be atomic-scale corrugations of the A-B interaction potential [11.12].

These modulations and the associated [riction force have first been observed
successfully on highly oriented pyrolytic graphite using the friction force
microscope (FFM) with a tungsten tip [11.2]. As for the theory, two different
approaches have been used to determine atomic-scale friction. Molecular
dynamics calculations with parametrized pair potentials have been used to
simulate the stick—slip motion and to determine the friction force between a Si
SFM tip and a Si substrate [11.8]. An independent approach, based on an ab
initio density functional calculation, has been used to determine the trajectory of
a Pd atom moving along a graphite surface and to estimate the associated
friction force [11.9].

The variety of processes which are expected to occur during shding friction
can be easily illustrated in a somewhat simple-minded model, namely two
haircombs in relative motion, with their teeth (representing surface atoms) in
contact. This is shown in Fig. 11.1. “Friction” occurs due to the snapping
motion as the teeth slide against each other (Fig. 11.1a). In the case that the teeth
are only weakly interlocked, [riction energy is dissipated into the vibrations of
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(b)

Fig. 11.1. Haircomb modcls illustrating the origin of atomic-scale friction. {a) Sliding {riction at an
“ideal™ A-B interface. (b) Sliding Iriction as observed in a friction force microscope (a modified SFM
capable of measuring forces in the direction of the trajectory). The teeth of the combs represent
atoms at the surface of materials A and B

the teeth of the “softer” comb. In the case of extremely weak interlocking, no
snapping motion of the teeth and consequently no [riction is expected. No wear
occurs in this process. In the case of strong interlocking, individual teeth are
likely to break off, corresponding to friction with wear. Without loss of
generality, this process can be investigated even if one of the combs has a single
tooth left, as shown in Fig. 11.1b. This is the basic model of sliding friction
between A and B being investigated by a sharp SFM tip of material
A interacting with the substrate B.

The microscopic description of friction without wear must address the fact
that friction is a non-conservative process. In other words, the [riction force
depends on the direction of motion between two bodies in contact and hence
can hot be obtained as a derivative of a potential. A closed-loop integral over
such a force yields a nonzero value of the dissipated energy W,

szﬂg}‘"x(x)(bc#O . (11.2)

The origin of the dependency of the force on the direction of motion is illustrated
in Fig. 11.2. The solid line with overhangs in the hatched area can be obtained as
a gradient of a potential. The overhangs cause a nonunique relationship
between £, and x. For a given direction of motion between A and B (either the
+x or — x direction), the system will follow the trajectory indicated by arrows
and thereby undergo a sequence of instabilities. The locations where these

Fig. 11.2. Force F, on the friction lorce
microscope tip along the trajectory of the

%  scan. Nonzero average value of (F, ), cor-
responding to friction, results from instabil-
ities and non-uniqueness in the F. versus
x relationship
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instabilities (or “snapping”) occur, depend on the direction of motion. The
resulting hysteresis reflects the microscopic irreversibility in the process. The
degrees of freedom predominantly involved in the instabilities are those of A or
B which are easiest to excite, giving rise to “tip-induced” or “substrate-induced”
friction. The energy dissipated in friction, W, is related to the hatched area in
the hysteresis curve. In the following, we will investigate the microscopic orgin of
this hysteresis and discuss friction in a quantitative way.

11.2 Ideal Friction Machines

11.2.1 Sliding Friction

In order to describe friction in a given system better than phenomenologically,
we must carefully examine the microscopic processes which lie at the origin of
the hysteresis in the “force versus position™ curve in Fig. 11.2. I will start the
discussion with the shiding friction between an SFM tip and the substrate. After
describing the real instrument which is being used to study atomic-scale friction,
I will simplify this system to an idealized “Friction Force Microscope” (FFM)
which gives rise to sliding friction without wear during a surface scan. I will
describe two different models of the FFM which contain the essential physics
leading to friction and which 1 will call “ideal friction machines” [11.13]. These
models should be sufficiently realistic to allow a comparison with the
experimental equipment described in the following.

One of the first FFM’s is a modified scanning force microscope with
a tungsten tip which has been used to observe atomic-scale friction without wear
on graphite [11.2]. A more recent realization of the friction force microscope
[11.14] is shown in Fig. 11.3. Like the SFM, the FFM consists of an “atomically
sharp” tip of material A, suspended on a soft cantilever, which is brought into
nondestructive contact with a well-defined substrate B. The vertical deflection of
the cantilever is regulated in order to keep the applied load F.,, constant during
the surface scan. The instrument shown in Fig. 11.3 uses the torque on the
cantilever due to a horizontal force on the tip to measure the atomic-scale
friction force F; between the tip A and the substrate B. The torsion of the
cantilever can be measured independently from F.,, by a laser beam which is

Fig. 113. Schematic picture of a friction force microscope. Both
vertical motion and torsion of the cantilever are observed by the

OOOOOO reflected laser beam
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Fig. 11.4. Two models of the Friction Force Microscope (FFM). In both models, the external
suspension M is puided along the horizontal surface x direction at a censtant velocity
v = dxy/dr — 0. The load F_,, on the “sharp” tip (indicated by V) is kept constant along the
trajectory z,(x,) (shown by arrows). (@) A “maximum [riction microscope”, where the tip is free to
move up, bul gets stuck at the maximum z, between Ax/2 and Ax. (b) A “realistic [riction
microscope”, where the position of the tip x, and the suspension x may differ. In this case, the
friction force F is related to the elongation x, — xy; of the horizontal spring [rom its equilibrium
value [11.13]

reflected from the cantilever. This experiment gives direct information about F;
as a function of F,,,. It is interesting to note that the torque induced by the
horizontal force can increase the vertical tip deflection at topographic surface
features and hence enhance the contrast of the SFM image.

Two idealized models of a friction force microscope are shown in Fig, 11.4.
In both models, the microscope suspension M moves quasi-statically along the
surface x-direction with its position x,, as the externally-controlled parameter.
The tip is assumed to be stiff in respect to excursions in the surface y-direction.
We restrict our discussion to the case of tip-induced friction and assume a rigid
substrate which applies for friction measurements on graphite [11.2,97.

In the “maximum-friction microscope” [11.9], the full amount of energy
needed to cross the potential energy barrier A}V along Ax is dissipated into heat
[11.15]. This process and the corresponding friction force can be observed in an
imperfect scanning force microscope which is shown in Fig. 11.4a. A vertical
spring connects the tip and the external microscope suspension M. The horizon-
tal positions of the tip and the suspension are rigidly coupled, x, = xy = x. For
0 < x < Ax/2, the load F.,, on the tip is kept constant by moving the suspension
up or down. For Ax/2 < x < Ax, however, the tip gets stuck at the maximum
value of z,.. At Ax, the energy AV stored in the spring is abruptly and completely
released into internal degrees of freedom which appear as heat.

The potential energy V(x) during the shiding process is shown in Fig. 11.5a
[11.9]. The force on the tip in the negative x-direction, as defined in Fig. 11.4a, is
given by

AV (xp)/oxy if 0 < xy < Ax/2

. (11.3)
0 if Ax/2 < xy < Ax

Frlxu) = {
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Fig. 11.5. (a) Potential energy of the tip ¥(x), (b) the friction force F,(x) and the average friction force
{Fy) in the “maximum friction™ microscope. The arrows indicate the tip trajectory corresponding to
a relaxed vertical tip position 2z, m, for a constant load on the tip [11.13]

and shown in Fig. 11.5b. The non-zero value of the average friction force {F¢),
indicated by the dash-dotted line in Fig. 11.5b, is a consequence of the mechan-
ism which allows the tip to get stuck. Fy(xy) is a non-conservative force since it
does depend on the scan direction. In absence of the “sticking” mechanism, F
would be given by the gradient of the potential energy everywhere, as indic-
ated by the dashed line in Fig. 11.5b; it would be independent of the scan direc-
tion and hence conservative. In such a case, F; would inhibit sliding for
0 < xy < Ax/2 and promote sliding for Ax/2 < xy < Ax. The average value of
this force would be zero, resulting in no friction.

A more realistic construction of the friction force microscope is shown in
Fig. 11.4b. In this “realistic friction microscope”, the SFM-like tip-spring assem-
bly is elastically coupled to the suspension in the horizontal direction, so that the
horizontal tip position x, may differ from x,,. While the equilibrium height of the
tp, 2, mia(X1), is independent of the scan direction in this model, a “snapping
motion” leading to friction can still occur 1n this instrument, specifically in the
case of a soft horizontal spring and a strongly corrugated tip—substrate poten-
tial. In the following, I will discuss the conditions for the onset of friction in this
model more quantitatively.

For a given x,, the SFM tip experiences a potential V(x,, z,) = Vin(x, z.) +
F . 2, consisting of the tip—surface interaction ¥, and the work against F,.
The tip trajectory z, mi.(x,) during the surface scan is given by the minimum of
V(x,, z,) with respect to z,. For this trajectory, V(x,) = V(x,, 2z, i) fEPresents an
effective tip—substrate potential. This potential V(x,) depends strongly on
F.« and is corrugated with the periodicity of the substrate due to variations of
the chemical bond strength and of z, ., as shown in Fig. 11.6a. The corruga-
tion of the potential V(x,) will elongate or compress the horizontal spring from
its equilibrium which corresponds to x, = x\. The “instantaneous friction force”
is given by

Felxm) = - clx, — xm) » (11.4)
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A graphical solution of (11.7) is shown in Fig. 11.6b and the resulting relation
x,(xm) 1s shown in Fig. 11.6c.

If, for a sufl spring, the force constant ¢ exceeds the critical value
Con= — [0*V(x)/0x%]mia,» We obtain a single solution x, for all xy. This
situation is indicated by the dotted line in Figs. 11.6b, c. The friction force F; is
given by (11.4) and shown by the dotted line in Fig. 11.6d. Since F is indepen-
dent of the scan direction, it is conservative, resulting in (F;> = 0. Conse-
quently, we expect no friction to occur during a nondestructive surface scan in
a stapdard SFM which we can consider as a limiting case of the instrument
shown in Fig. 11.4b for ¢ - co.

A more interesting case arises if the horizontal spring is soft, ¢ < ¢.,;,. This
situation is represented by the solid line in Figs. 11.6b,c. In this case, the
solution x(xy) of (11.7) displays a sequence of instabilities. These instabilities
lead to a stick-slip motion of the tip as x,, increases, similar to “plucking
a string”. The hysteresis in the x,(xu) relation (Fig. 11.6¢) results in a dependence
of the force F; on the scan direction. The friction force Fg(xy) 1o this case is
shown by the solid line in Fig. {1.6d. It is a nonconservative/dissipative force
and averages to a non-zero value of < F(), given by the dash-dotted line. The
energy released from the elongated spring into heat is represented by the shaded
area in Fig 11.6d.

The present theory predicts occurrence of friction only for very soft springs
or a strongly corrugated potential ¥ (x,). The latter fact can be verified experi-
mentally since the cormugations AV (x,) increase strongly with increasing applied
load [11.9]. Consequently, for a given ¢, the friction force is zero unless
a minimum load F,, is exceeded. On the otber hand, for given F,,, no fnction
can occur if ¢ exceeds the critical value ¢, (F o).

A simi]ar situation occurs during sliding between large commensurate flat
surfaces of A on B. In that case, c is given by the elastic constants of A at the
interface [11.12], hence can not be changed independently. Since ¢ is rather large
in many matenals, zero friction should be observed for moderate applied loads
in the absence of wear and plastic deformations. For a multi-atom “tip” which is
commensurate with the substrate, the tip—substrate potential is proportional to
the number of tip atoms at the interface, n, as is the critical value ¢, for nonzero
friction. In this case, the effective FFM spring depends both on the external
spring and the elastic response of the tip material. The inverse value of c.,; 1s
given by the sum of the inverse values of the corresponding spring constants.
For a large tip which is incommensurate with the substrate, no friction should
occur [11.3].

The average [riction force {F¢) as a function of the load F,, and the force
constant ¢ is shown as a contour plot in Fig. 11.7. Clearly, the applicable load
raoge is Jimited by the underlying assumption of contact without wear. This
figure illustrates that not only the [riction force Fy, but also the {riction coeffic-
lent p = (F)/F.y, depend strongly both on the interaction potential between
the two materials in contact and on the intrinsic force constant ¢ of the friction
force microscope. This clearly makes the friction force dependent on the
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in Fig. 11.8. The cantilever can be conveniently represented by a vertical spring
with a force constant ¢ (Fig. 1 1.8a). The substrate-induced force on the tip F, is
compensated by the elongated spring,

Fi(zm) = —c(zo— 2m) - (11.8)

Here, z is the equiltbrium tip position in the absence of the substrate. The total
potential energy V,, of the system consists of the tip—substrate interaction
V(z, — z5) = V{z,) (note that the topmost substrate layer is at z, = 0) and the
energy stored in the vertical spring,

Vielzy, 2m) = V(z,) + EL c(z, — ZM)2 . {11.9)

For a given position zy of the tip suspension, the equilibrium position of the tip
z, is obtained by minimizing ¥,,, with respect to z,. We obtain

Vi _ BV(z)

0z, 0z,

+c(z,—zy)=0 (11.10)

or, with (11.8),
aV(z)

'\Z(

Fi= —cz,+ czy = (11.11)

A graphical solution of (11.11) is exhibited in Fig. 11.8b and the resulting
relation z,{zy) 1s displayed in Fig. 11.8¢.

Let us consider a tip approaching the substrate from z — cc . The force on
the tip F, will be zero first, resulting in z, = zy, as shown in Fig. 11.8b, ¢. As the
tip slowly approaches the point labeled “1”, a deflection towards the surface
occurs due to the attractive tip—substrate interaction. At the point labeled “17,
the spring can no longer compensate the strong tip-substrate attraction, and the
tip jumps to a point labeled “2”. The resulting kinetic energy of the tip is
dissipated into heat or plastic deformations at the tip-substrate interface.
Should the microscope suspension zy approach the substrate further, the tip will
first experience a weakly attractive, then a repulsive intcraction with the
substrate and will undergo no instabihties. Upon retracting the microscope
suspension zy, the tip will first probe the strongly attractive part of the potential
between points “2” and “3”. At point “3”, the {orce in the stretched spring can no
longer be compensated by the tip-substrate attraction, and the tip jumps to the
point labeled by “4”. Upon further retracting the microscope suspension zy, the
tip will expenence a decreasing attractive interaction from the substrate,
resulting in z, — zy with no further instabilities. This is quite analogous to the
results presented i Fig. 4.6 for the case of a statiopary tip suspension zy and
a moving sample.

Since according to (11.8), F = — ¢(z, — zy) is the force on the tip, the
hatched area in Fig. 11.8c 1s proportional to the energy dissipated during an
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Fig. 11.9. Approach-retraction cycle of (a) a single SFM tip and
{b) an array of tips attached to a cylinder rofling on a substrate,
The relation of these models to rolling friction between a solid
cylinder and a substrate, shown in (c), is discussed in the text

FITTTTIT I T I77T7 777777
A B c

(c)

approach-retraction cycle of an SFM tip. This A-B—C-A cycle, which is illus-
trated in Fig. 11.9a for a single SFM tip, occurs during a revolution by A¢ of
a rolling cylinder which has a set of SIFM tips attached to the surface, as shown
in Fig. 11.9b. The latter 1s, as a matter of fact, a reasonable model for the energy
dissipation at the surface of a solid cylinder, once we associate SFM tips with
surface atoms. The corresponding cylinder, which can be imagined as covered
by sticky tape and rolling on a substrate, is shown in Fig. 11.9¢c. The analogy
between the cylinder and the SFM is based on the fact that the surface layer of
the cylinder interacts with the substrate by Lennard—-Jones type potentials, and
is kept in place by harmonic forces, same as the SFM tip in Fig. 11.8a.

We conclude that the microscopic origin of rolling friction without wear lies
in the hysteresis in the z,(zy,) relation in Fig. 11.8c. Consequently, the micro-
scopic mechanism which transfers macroscopic rotational energy from the cyl-
inder into microscopic degrees of freedom (heat) can be studied quantitatively
by measuring the energy dissipated during a single approach-retraction cycle of
an SFM tip.

11.3 Predictive Calculations of the Friction Force

11.3.1 Tip—Substrate Interactions in Realistic Systems: Pd on Graphite

As I discussed above, a quantitative study of sliding or rolling friction is possible,
once the interaction potential ¥ at the interface between material A and material
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B is known accurately enough. In this section, I want to illustrate how for
a model system, namely a Pd FFM tip interacting with a graphite substrate, this
interaction can be calculated from first principles.

Graphite is an ideal substrate for the study of friction since the binding
energy of adsorbed atoms and the vanations thereof along the surface are
negligibly small near the equilibrium adsorbate—substrate separation. This is
specifically true for the Pd-graphite interaction, which is depicted in Fig. 11.10a
for the on-top (T) and the sixfold hollow (H) site as a function of the Pd-graphite
separation [11.9]. The adsorption energies E,4 of Pd atoms (representing the
Pd monolayer) in the two adsorption sites on graphite have been defined as
E.i = E.(Pd/graphite) - E .. (Pd) — E,a(graphite). The first-principles total
energy calculations for this system have been performed using the Density
Functional Formalism within the Local Density Approximation (LDA) [11.17]
and the ab initio pseudopotential local orbital method [11.187. The details of the
calculation have been discussed in [11.9]. The surface of hexagonal graphite has
been represented by a 4-layer slab and the adsorbate by a monolayer of Pd
atoms in registry with the substrate (1 Pd atom per surface Wigner-Seitz cell of
graphite). The valence charge density of the system is shown in Fig. 11.10b.

For a realistically large and sharp SFM tip, the tip—substrate interaction is
likely to be modified by the long-range van der Waals force which is not
reproduced correctly by LDA. The van der Waals force between an extended
conical tip and a flat surface is estimated using the expression

—
Q
—

E,;(eV)
- 0 = N W A& OO N9 O o O
- T T T T

Fig. 11.10. (a) Pd adsorption encrgy E,q as a func-
tion of the adsorption height z above the surface
of hexagonal graphite. The solid lines connecting
the data points given by @ are for the sixfold
hollow (H) sites, and the dashed lipes connecting
> the data points given by e arc for the on-top (T)

Z(K) sites. An enlarged section of the graph near equi-
librium adsorption is shown in the inset. A second
inset shows the adsorption geometry and a pos-
sible trajectory of the Pd layer along x in top view.
(b) Valence charge density of the Pd/graphite sys-
tem. The results of the LDA calculation are for
the on-top adsorption site near the equilibrium
adsorpuon distance z.,, and are shown in the
xz-plane perpendicular to the surface. The ratio

@ @ @ of two consecutive charge density contours
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Fyawl(z) = Ay x tan? a/(6z), where o is half the opening angle of the tip cone
{11.19]. In this expression, Ay is the Hamaker constant and z is the distance
between the conical tip and the surface. As typical values for a metal tip, one can
assume o = 30° and Ay = 3x 107 '* 1, For tip-substrate distances z > 3 A, the
van der Waals forces are very small, typically Fygw < 107!°N. At smaller
distances, these forces can be neglected when compared to the closed-shell and
mternuclear repulsion which are both described correctly within LDA. Siance
each of these regions i1s dominated by oply one type of interaction, the total
tip--substrate force I, can be approximated as a superposition of the force
described by LDA and the van der Waals force. It turns out that the van der
Waals forces are not very important for the interpretation of experimental
results, since they do not show atomic reselution [11.20] and are easily
compensated in the expenment by adjusting the force on the cantilever which
supports the tip.

From Fig. 11.10a we see that the equilibrium adsorption bond strength of
< (.1 eV is very weak and much smailer than the cohesive energy of the tip
material (Pd metal) or the graphite substrate, which is an important prerequisite
for friction with no wear. Near the equilibrium adsorption height z ~ 3 A,
the corrugation of the graphite charge density is negligibly small due to
Smoluchowski smoothing [11.21] and the position-dependence of the
adsorption bond strength is < 0.1 eV [11.22], which should result in a very
small friction coefficient. This calculation indicates that at bond lengths z < 2 A,
the hollow site i1s favored with respect to the on-top site. Al zx 2 A, the
adsorption energies arc nearly the same and, at larger distances, it is the on-top
site which 1s slightly favored by < 0.05 eV. This is consistent with the dominant
interaction changing from closed-shell repulsion (which strongly favors the
hollow site at very small adsorption bond lengths) to a weak chemisorption
bond (which is stabilized by the hybridization with p. orbitals in the on-top site).
As T will discuss later, the change of the preferential adsorption site from the
on-top to the hollow site as a function of the applied load leads to an anomaly in
the friction coefficient .

A prerequisite for the calculation of the friction force is the precise
knowledge of the Pd adsorption energy E,4(x, z) along the whole graphite
surface. Since the corresponding ab initio calculations are computationally very
expensive, it is useful to find simpler ways to determine this quantity. Several
simple potentials have been used for this purpose so far [11.23-257. Since small
maccuracies in the interaction potentials have a large effect on the friction force,
a safer way 18 to parametrize existing LDA results in a2 way which makes an
evaluation of E,, very easy everywhere. This can be achieved by approximating
E.q by a local function which depends only on the total charge density of the
graphite host at the Pd adsorption site [11.26],

EL4(r) = E.a(e(r)) - (11.12)

This form of the interaction potential is inspired by the density functional
formalism [11.17] and the embedded atom method [11.27] and hence is
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Fig. 11.11, Relation between the Pd adsorption
energy E, (r) and the total charge density of
4 graphite o(r) at the adsorption site r, given by
(11.13). An enlarged section of the graph near
equilibrium adsorption js given in the inset

[11.26)

Eaq(eV)
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expected to be quite general, not restricted to the Pd-graphite system.
A convemient parametrization of E,4(0(r)) is

E.a(o(r)) = &,(0/00)"" — €2(0/00)** . (11.13)

In the case of Pd on graphite, &, = 343.076 eV, ¢, = 2.1554 ¢V, a, = 1.245,
o, = 0.41806, and g, = 1.0 e/A3. The dependence of E,4 on o, obtained using
the parametrized form in (11.13), 1s depicted in Fig. 11.11.

In many cases, the total charge density can be well approximated by
a superposition of atomic charge densities,

o) =Y oulr—R,) . (11.14)

This parametrization is especially convenient in case of deformed surfaces where
an LDA calculation is difficult due to reduced symmetry. On flat graphite
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£ e
o}
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S
: e
y Fig. 11.12. Radial plot of the charge density of
0 . a carbon atom g,(r), based on LDA (dashed

line). The solid hinc shows the parametrized form
. . . . . . of the charge density, given by (11.15) [11.26]
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surfaces, the maximum difference between the LIDA charge density and the
superposttion of atomic charge densities is only a few percent.

Finally, the LDA charge density of the substrate (carbon) atoms can be
conveniently expressed as

Oulr) = oce ™", (11.15)

where gc = 6.0735¢/A> and § = 3459 A~ . As shown in Fig 11.12, this fit
represents the LDA results very well.

11.3.2 Atomic-Scale Friction in Realistic Systems: Pd on Graphite

In the following, I will discuss the atomic-scale friction between a monatomic
Pd FFM tip and graphite, based on the “maximum friction microscope™ model
illustrated in Fig. 11.4a. 1 will show how the interaction potential between a Pd
monolayer and graphite (Pd in registry with the substrate), which has been given
in Sect. 11.3.1, can be used to estimate the friction force (and friction coefficient
u) as a function of the applied load.

For a microscopic understanding of the friction process, let us first consider
the motion of the Pd layer along the graphite surface, under the influence of an
external load per atom [11.28] f.,, which is normal to the surface. Following
[11.9], we consider a straight trajectory along the surface x direction connecting
nearest neighbor sixfold hollow sites on graphite, which are separated by Ax and
connected by a bridge site.

As mentioned in the description of the "maximum friction microscope” in
Sect. 11.2.1 and shown in Fig. 11.4a, the horizontal positions of the tip and the
microscope suspension are the same, x, = xy = x. The potential energy V of the
system along this trajectory has two main components. The first consists of
variations of the tip—surface interaction (or adsorption bond cnergy)
Vi, z.) = E.a(x, z,). The second is given by the work against the external load
foxe applied on the apex atom of the tip, due to the variations of the tip-substrate
distance (or adsorption bond length). Hence,

V(xs exl) = Ead(-x; Zl. rniu(x)) +f;:1.lzl.min(x) = V()(fen) . (1116)

Here, the potential energy has been sct to zero at the hollow site by defining

VO(J{exl) = Ead(xH: zl.min(x)) +j;:1|z‘.min(xll) . “ 117)

The equilibrium tip height z, .;.(x) along the trajectory can be determined from
¢

Jen = _E:Ead(xaz) : (I1.18)

In Fig. 11.13a, ¥(x)} is shown for different external loads. We find that the
variations of ¥ are dominated by the mechanical component and only partly
compensated by the site-dependence of the adsorption energy. As a result of the
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{(a) o8 . ; : Fig. 11.13. (a) Potential energy V(x) of the Pd-
graphite system as a function of the position of the
Pd layer along the surface x-direction, for external
forces fu, = 3x107°N (dotted line), 6x107° N
(dashed line) and 9 x 10™° N (solid line). The inset
shows the adsorption geometry and trajectory of
the Pd layer in side view. (b) Atomic-scale struc-
ture of the force along tbe sarface f, (dashed line)
and the [riction force f; = max ( f;, 0) (solid line) for
S =9x 107N [11.9]

0.5

V(x) (eV)

o
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variations of ¥ along x, there is a position-dependent force f, along the
x direction. In analogy to (11.3), this force is given by

2
JelX, fex) = I VX, fext) (11.19)

and shown in Fig. 11.13b. The maximum value of f, describes the static friction
governing the onset of stick-slip motion. Non-zero average sliding friction
comes from the nonconservative “sticking mechanism” of this particular FFM,
which is illustrated in Fig. 11.4a and which results 1 zero horizontal force on
the tip for Ax/2 < x < Ax (see (11.3)). In order to estimate the friction force
along the trajectory, we note that the energy loss due to friction W; along Ax can
not exceed the activation energy corresponding to the largest change of ¥, hence

W < AV, . (11.20)

Let us now assume that at Ax, the entire energy stored in the spring gels
transferred 1nto surface phonons and electron-hole pairs [11.15], as indicated in
Fig. 11.4a. Then, both sides of (11.20) will be equal. The hornzontal force on the
tip will show atomic-scale structure and will not average to zero, as indicated 1n
Figs. 11.5b and 11.13b. This has been observed recently using the FFM [11.2].
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The energy W; dissipated in friction along the trajectory Ax can be used to
define the average friction force ¢ f;) as

We={f>Ax, (11.21)
or, using (11.20) for W,

1
{Se> =EAVM : (11.22)

The {rction coefficient y, defined in (11.1), can now be estimated as

f AVmax
p= <ff> ~ oo (1123)

In Fig. 11.14, pis shown as a function of /., We find a general increase of p with
increasing external force, in contradiction to the general notion that u is nearly
independent of the l1oad. The minimum in g( f,,,) near f,,, = 5x 1072 N is caused
by the switching of the minima in V(x) from H to B, depicted in Fig. 11.13a
[11.29].

The above estimates of g have been obtained [or an infinitely nigid substrate,
an assumption which holds only within a limited load range. Theoretical results
of [11.16,30], which will be summarized in Sect. 11.4, indicate that if the
external force (per atom) exceeds 1078 N, the graphite surface is very strongly
deformed [11.31] and likely to be ruptured [11.6]. Since no plastic deformations
have been observed in the SEFM/FFM studies [11.2], the applied forces were
probably in the region f,,, < 10~ 8 N. For these values of f,,,, the above results
for the friction coefficient of p= 107?% agree with the experimental value
[11.2,6].

In order to obtain a meaningful companson with observable friction forces,
we have to make further assumptions about the macroscopic tip-substrate

0.08 — ~ —
0.05
ooe}
0.03 J

0.02

Friction Coefficient p

0.01 | J Fig. 11.14. Microscopic friction coefficient g as
a function of the external force per atom

0.00 . . ! . Jen [11.9]
0 5§ 10 15 20 25 30
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interface and the elastic response of the substrate to external forces. In the
simplest case, we consider an atomically flat interface, where n atoms are in
contact with the substrate, and neglect elastic deformations. Then, the external
force per atom f,,, is related to the total external {orce F,, by

fexe =7 Fen - (11.24)

In Fig. 11.15 we use the calculated p( f.,,) to plot the total friction force F; for
such a perfectly flat interface consisting of 1500 Pd atoms. Since p increases with
increasing value of f,,,, the F; versus F,,, relationship is non-linear, which has
also becn observed in the SFM experiment [11.2].

At this point, it is important to address the validity range of the above
calculations. Obviously, the implicit assumption of an infinitely rigid substrate
will remain realistic only for limited loads F.,, applied on the tip, especially in
the case of graphite. Also, there is a critical load for each system which marks the
onset of plastic deformations within either the substrate or the tip. The latter
point will be discussed in more detail in the [ollowing section. Here, I would like
to discuss a simple modification of the above results for friction in the case of an
extended tip and an elastic substrate.

In the case of large external forces and an elastic substrate such as graphite,
linear elasticity theory predicts [11.32] the substrate delormations to be
proportional to F!/2. In the case of a spherical tip [11.2], the tip-substrate
interface area and the corresponding number of atoms in contact at the interface
are proportional to F 2. Then, the force per atom f,,, is proportional to F 2.
Hence for increasing external forces, variations of the eflective force per atom
and of u are strongly reduced due to the increasing interface area. This is
illustrated by the dashed line in Fig. 11.15, which is based on the assumption
that n = 1500 tip atoms are in contact with the substrate at F,, = 107 N.
These results are in good agreement with the FEM results for a large nonspecific
tungsten tip with a radius R = 1500 A-3000 A on graphite [11.2], but show

20 . . —
I‘
J
o’
)
R )
15 Ay .
r . . .

= K Fig. 11.15. Macroscopic friction force F as a func-
o i tion of the external force F.,, for a large object. The
© 10} R 1 solid line describes a “flat™ object, the surface of
~ . which consists of 1500 atorus in contact with a rigid
o /) substrate. The dashed line describes a large spheri-

~ W ’ . . .
5 . / 4 cal tip and also considers the effect of elastic sub-

" 7 . -
’ 4 strate deformations on the eflective contact area.
R The dotted line corresponds to a constant friction
o WS . . coefficient u = 0.012 [11.9]
0 5 10 15 20

F_. (1078N)
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a slightly larger increase of the friction force than that observed for the range of
externaj forces investigated.

it is instructive to discuss some consequences of the above theory for
atomic-scale friction. At rough interfaces, the friction coefficient u generally
increases due to the onset of plastic deformations or wear associated with bond
breaking at the interface. It is interesting to note that even in the case of no wear,
the above theory would predict an increased value of u at a rough interface,
since the number of atoms n in contact with the substrate is smaller in that case,
which would lead to an increase of f,,, and hence of u. Also, with increasing
relative velocity between the bodies in contact, the coupling between
macroscopic and internal microscopic degrees of freedom (phonougs, electron—
hole pairs) gets less efficient. Then, Wy < AV, 1n (11.20), which should result in
a decrease of € f;» and .

11.4 Limits of Non-destructive Tip—Substrate Interactions
in Scanning Force Microscopy

The operating load range of the SFM {(and hence the FFM) is limited in two
ways. If the applied load on the tip is too small, atomic-scale modulations of the
tip~substrate distance z, and of the horizontal force on the tip f, will lie below
the detection limit. If the load is too large, the substrate and/or the tip will
be destroyed. The optimum operating range can be predicted, once the
tip—substrate interaction potentials and the elastic properties of the tip and the
substrate are known.

Some of these questions have been addressed previously in calculations of
the interaction between an infinite “periodic” carbon or aluminium tip and
a rigid surface {11.33]. Other calculations have considered the interaction
between a single SFM tip and an elastic surface represented by a semi-infinite
continuum [11.30] or by a model system of finite thickness [11.25,34]. In the
following, I will show, how this optimum load operating range can be deter-
mined in a parameter-(ree calculation. The numerical results will be for a mon-
atomic and a multi-atom Pd SFM tip interacting with graphite, a system which
has been discussed in [11.16].

I will start with a discussion of the minimum load required to observe
atomic-scale features in SFM images and/or non-zero friction (Fig 11.7) on
a rigid substrate. Figure 11.16a shows the expected SFM corrugation Az during
a horizontal xy scan of the graphite surface by a monatomic Pd tip, for
firw = 1078 N. The top view of the geometry is shown schematically in the inset
of Fig. 11.16b for 2 monatomic Pd tip (left) and a three-atom Pd tip (right) at the
hollow (“H”) site. The hatched cricles correspond to Pd atoms at the tip apex.

Figure 11.16b shows the SFM corrugation Az(x) for different loads f,,. The
tip trajectory along the surface x-direction, shown by arrows in the inset of
Fig. 11.16b, contains the “T” and “H” sites and yields the largest corrugation. As
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understood intuitively in the simple-minded haircomb model of sliding friction
in Fig. 11.1a.

The range of applicable loads F,, is limited by the condition that substrate
distortions near the SFM tip should remain in the elastic region. Since full-scale
LLDA calculations of local SFM-induced distortions of a semi-infinite graphite
surface are practically not feasible, the following approach has proven to be
quite useful. For small loads, the relaxation of carbon atoms at the graphite
surface due to the SFM tip can be determined using continuum elasticity theory
[11.36], with elastic constants obtained {rom ab initio calculations [11.307. This
continuum approach 1s applicable in the linear response regime and has been
successfully used previously to calculate local rigidity, local distortions and the
healing length of graphite near an SFM tip and near intercalant impurities
{11.30,36]. In a second step, the total charge density of the distorted graphite
substrate is reconstructed {rom a superposition of atomic charge densities (see
(11.)4)) which can be calculated by LDA. Based on this total charge density, the
tip—substrate interaction and the equilibrium tip position for a given applied
load can be obtained using (11.12).

In the continuum elasticity calculation, the semi-infinite system of graphite
iayers is characterized by the interlayer spacing d, the in-plane C—C bond length
dc -, the flexural tigidity D, the transverse rigidity K (proportional to C,,) and
c-axis compressibility G (proportional to Ci3) [11.30, 36]. The LDA calculations
for undistorted graphite yield d = 3.35 A and d¢ = 1.42 A, in excellent agree-
ment with experimental and previous theoretical results [11.37,38]. The con-
tinuum calcu}atzon is further bascd on the elastic constants D =.7589 K,
K =932 K A %and G = 789 K A~* which have been obtained from calculated
graphite vibration modes [11.30] and the expertment [11.37]. The continuum
elasticity theory, as applied to SFM experiments on graphite, is discussed in
more detail in Chap. 10.

The total charge density of the graphite surface, distorted by a Pd SFM tip,
is shown in Fig. 11.17. A comparison of charge density contours with results of
the self-consistent calculation in Fig. 11.10b proves a posteriori the applicability
of the linear superposition of atomic charge densities. Fig. 11.17a shows that
the substrate distortions in response to a monatomic SFM tip at a load
Feu =/ =5x10"¥N are already substantial, while the corrugations of
Az ~ 0.06 A, shown in Fig. 11.16b, are marginally detectable. For larger applied
loads Foy = fue > 50 % 107 ? N, which would lead to sizeable corrugations in
Az, the local distortions of graphite are very large. Even though linear response
theory is not applicable in this force range, the estimated substrate distortions,
shown in Fig. 11.17b, indicate the possibility of tip-induced plastic deformations
in this load range. As shown in Fig. 11.17¢, similar large (and possibly plastic)
deformations are expected for a tip with a multi-atom apex, even though the
load per atom f.,, may be relatively small.

In general, we expect plastic deformations to occur whenever the interlayer
distance in graphite approaches the value of the intralayer C-C distance.
According to linear response theory, this occurs for f.,,z5x 107° N, Under



Fig. 111} Total sharge desppy o ol o Pd TEM qp
A raciing wiuh the clade wrise ol grophule mear the
nallaw e Contowrd of wndtant - orr chews w b
cl-piamd fetrpefdetams o e wefacd The rewdis are for
lpady @) Foo® o, =340 "N amd i F =7,
1ol "N oapphed on 0 mansicem< pe sid €0 lar
P m Mo = L2 107" Nupplwd on g Larom up The
raimg ol lwn roeggcobse charge  domsily cosTeat
gin F lpen)l o 1 & The lgoplaop o (e nppi-fd I =ad
acting of 1 he Pd atoma o thet sgea af the Lip w8 mmdsasied
oo VLI IR

these condilioos, an rreversible rehybriduation of carbor orbitals from graph-
i sp! to dmornd-like sp’ bording = likely te icvur below the tp apes An
catimare of the crilical SEM force for thes plasne delormation, which docs not
iy o the continuum elastcity theary. hns ceen oblaced 1o a fisst-princples
calculation [11.39] al the graphite—diamond tranwition as o function of external
pressure along the graphite ¢ wxis These resulry, correspunding Lo wn "infmiely
extended 1ip”, indicate & critical foree per surfoce atem of £, = 10 ® N for tms
trapatunin Thue oo the targe Aexsural agday of grphate, (ms foree increases by
mal® an order ol magmitede (08 A ope-alom Gp moagreement with the value
quoted alwive

A realistic SEM up s mare conuplea than the model tip discussed above and
veuld consst of a gmeneip of one o lew wioms on lop of a larger bip
& wuhutaniml posrhinn ol this ]rlrgrl tp cuild, lhrnugh the "cushimn”™ of & con-
ramiranan layer 31 V) or a graphue Ainke [11.40, 4] ), d=sinbute the wpphed
ot mote venly Qoross O large substraie alea, 1edoce the large curvalure near
the tip (Fg 11 17) and increase the minurum separat:on bheiween graphite
Lavers Thas effect would incrense the upper limit of applicable loads £, compar-
iBle with elagtic sibslrate defarmations and make nondesiruchive maging of
sierface Inpographec leatures and of shdug fncton on the amamac scabe possible
[11.25]

A bamwipdgemanca | 1%aek Froleseoms i1 Thomas § Sedbog and H -] Gridnraerndt gy well a5 D O
Ulwi rnaty, fer atimulbtong discusspond Petip) suprset Ge e CHTce of Navel Rescarch ymdcr comirect
Mo MOOOT4- A0 J-1 19 18 ack nioveded ped



11. Theory of Atomic-Scale Friction 291

References

11

£1.2

113
11.4
{5
11.6
1.7

11.8

t1.9
11.10

11.11

11.42
11.13
11.14

11.15
11.16
.17
11.18

11.19
11.20
11.21
11.22

11.23
11.24
11.25
11.26
11.27
11.28

11.29

11.30

11.31
11.32

A summary of the present knowledge in tribology can be found in Adhesion and Friction, ed.
by M. Grunze, H.J. Kreuzer: Springer Ser, in Surf. Sci., Vol. 17 (Springer, Berlin Heidelberg
1989)

C. Mathew Mate, Gary M. McClelland, Ragnar Erlandsson, Shirley Chiang: Phys. Rev. Lett.
59, 1942 (1987)

G.M. McClelland: In [11.1]

J. Spreadborough: Wear 5, 18 (1962)

R.D. Arnell, J.W. Midgley, D.G. Teer: Proc. Inst. Mech. Eng. 179, 115 (1966)

J. Skinner, N. Gane, D. Tabor: Nat. Phys. Sci. 232, 195 (1971)

G. Binnig, C.F. Quate, Ch. Gerber: Phys. Rev. Lett 56, 930 (1986): ibid. Appl. Phys. Lett. 40,
178 (1982); G. Binnig, Ch. Gerber, E. Stoll, T.R. Albrecht, C.F. Quate: Europhys. Lett. 3, 1281
(1987)

Uzi Landman, W.D. Luedtke, A. Nitzan: Surf. Sci. 210, L177 (1989);, Uzi Landmaun.
W.D. Luedtke, M.W. Ribarsky: J. Vac. Sci Technol A 7, 2829 (1989)

W. Zhong, D. Tomanek: Phys. Rev. Lett. 64, 3054 (19%90)

L.D. Landau, E.M. Lifshitz Course ol Theoretical Physics, Vol 1: Mechanics (Pergamon,
Ox{ord 1960) p. 122

The optimum selection of C is charactenized by strong A~C and B~C bonds, while C itsell
should have a low shear modulus.

G.A. Tomlinson: Phil. Mag. S. 7, Vol. 7, 905 (1929)

D. Tomanek, W. Zhong, H. Thomas: Europhys. Lett. 15, 887 (1991)

E. Meyer, R. Overney, L. Howald, D. Brodbeck, R. Liithi, H.-J. Guntherodt: In Fundamentals
of Friction, ed. by 1. Singer, H. Pollock: NATO-Advanced Study lostitufe Series (Kiuwer,
Dordrecht 1992)

J.E. Sacco, J.B, Sokolofl, A. Widom: Phys. Rev. B 20, 5071 (1979)

W. Zhong, G. Overney, D. Tomének: Europhys. Lett. 15, 49 (1951)

W. Kohn, LJ. Sham: Phys. Rev. 140, A1133 (1965)

CT. Chan, D. Vanderbilt, S.G. Louie: Phys. Rev. B33, 2435 (1986); C.T. Chan,
D. Vanderbilt, S.G. Louie, J.R. Chelikowsky: Phys. Rev. B 33, 7941 (1986)

M. Anders, C. Heiden: (submitted for publication)

C. Hone, H. Miyazaki: Phys. Rev. B 42, 11757 (1990)

R. Smoluchowski: Phys. Rev. 60, 661 (1941)

This effect is also responsible for the large value of the surface diffusion constant on graphite
and apparent small sensitivity of surface friction 10 adsorbed films, as discussed in [11.6]
J.B. Pethica, W.C. Oliver: Physica Scnipta T 19, 61 (1987); I.P. Batra, S. Ciraci: Phys. Rev.
Lett. 60, 1314 (1988)

S. Gould, K. Burke, P.K. Hansma: Phys. Rev. B 40, 5363 (1989)

F.F. Abraham and 1.P. Batra: Surf, Sci. 209, L125 (1989)

D. Tomanek, W. Zhong: Phys. Rev. B 43, 12623 (19%91)

M.S. Daw, M.I. Baskes: Phys. Rev. B 29, 6443 (1984)

Io the following, I denote microscopic forces per atom by fand macroscopic forces applied on
large objects by F

Near f,_ =5x107°N, the potential V is essentially constant across the graphite surface,
which leads 10 u = 0 (Fig. 11.14). Small deviations [rom this behavior can anse due to
tip-induced substrate deformations and small inaccuracies in the energy formula given in
(11.12)

D. Tomanek, G. Overney, H. Miyazaki, S.D. Mahanti, H.J. Giintherodt: Phys. Rev. Lett. 63,
876 (£1989); ibid. 63, 1896(E) (1989)

H.J. Mamin, E. Ganz, D.W. Abraham, R.E. Thomson, J. Clarke: Phys. Rev. B 34, 9015 (1986)
L.D. Landau, EM. Lifshitzz Course of Theoretical Physics, Vol. 7: Theory of Elasticity,
(Pergamon, Oxford 1986) p. 53



292 D. Tomanek. Theory of Atomic-Scale Friction

11.33 S. Ciraci, A. Baratoff, I.P. Batra: Phys. Rev. B 41, 2763 (1990); [.P. Batra, S. Ciraci: J. Vac. Sci.
Technol. A 6, 313 (1988)

11.34 U. Landman, W.D. Luedtke, N.A. Burnham, RJ. Colton: Science 248, 454 (1990)

11.35 E. Meyer, H. Heinzelmann, P. Gruuter, Th. Jung, Th. Weiskopf, H.-R. Hidber, R. Lapka,
H. Rudin, H.-J. Guntherodt: J. Microsc. 152, 269 (1988)

11.36 S. Lee, H. Miyazaki, SID. Mahanti, S.A. Solin: Phys. Rev. Lett. 62, 3066 (1989)

11.37 H. Zabel: In Graphite Intercalation Compounds, ed. by H. Zabel, S.A. Solin: Topics in Current
Phys. Vol. 14 (Springer, Berlin Heidelberg 1989).

1138 C.T. Chan, K.M. Ho, W.A. Kamitakabara: Phys. Rev. B 36, 3499 (1987); C.T. Chan,
W.A. Kamitakahara, K.M. Ho, P.C. Eklund: Phys. Rev. Lett 58, 1528 (1987)

11.39 S. Fahy, S.G. Louie, M.L. Cohen: Phys. Rev. B 34, 1191 (1986)

11.40 1.B. Pethica: Phys. Rev. Lett. 57, 3235 (1986)

11.41 G. Overney, D. Tomanek, W. Zhong, Z. Sun, H. Miyazaki, S$.D. Mahantj, H.J. Glntherodt:
J. Phys.: Cond. Mat. 4, 4233 (1992)



	scan0001.jpg
	scan0003.jpg
	scan0005.jpg
	scan0002.jpg
	scan0004.jpg
	scan0006.jpg
	scan0007.jpg
	scan0008.jpg
	scan0009.jpg
	scan0010.jpg
	scan0011.jpg
	scan0012.jpg
	scan0013.jpg
	scan0014.jpg
	scan0015.jpg
	scan0016.jpg
	scan0017.jpg
	scan0018.jpg
	scan0019.jpg
	scan0020.jpg
	scan0021.jpg
	scan0022.jpg
	scan0024.jpg
	scan0023.jpg

